3.6.7.4 The C50 algorithm
150
3.6.7.5 Seeds classification
152
3.6.7.6 Factor Xa protease cleavage data classification
153
.8 The random forest algorithm
154
ary
158
ic-Epigenetic Interplay Discovery
160
biological question — the genetic-epigenetic interplay
ttern discovery problem
161
gression analysis
162
e ordinary linear regression analysis algorithm
167
.1 The least squared error approach
167
.2 Assess the fitness of a regression model
170
.3 The significance analysis of regression coefficients
173
.4 The regression model confidence bands
175
.5 R function for ordinary linear regression analysis
175
e generalised additive model algorithm
179
e Bayesian linear regression algorithm
183
e constrained regression analysis algorithms
184
.1 The ridge linear regression algorithm
185
.2 The Lasso linear regression algorithm
187
.3 The elastic net linear regression algorithm
190
nking variables using the vip package
191
e nonlinear regression analysis algorithms
192
igenetic-genetic interplay pattern discovery
195
.1 Methylation site to gene — the M2E models
197
.2 Gene to methylation site association — E2M models
203
ary
207
al Pattern Discovery
209
biology question
210
roduction of baseline estimation approaches
210
e Whittaker-Henderson algorithm
212
e spline smoother
218
e adaptive iterative reweighted penalised least square
oother
220
e asymmetric least square smoother
221
e Bayesian Whittaker-Henderson algorithm
224
7.1 The working principle of BWH
224
7.2 The smoothing of the extracted peak spectrum
228
7.3 The generation of the merged and unique peaks
229